Double hierarchical generalized linear models
نویسندگان
چکیده
We propose a class of double hierarchical generalized linear models in which random effects can be specified for both the mean and dispersion. Heteroscedasticity between clusters can be modelled by introducing random effects in the dispersion model, as is heterogeneity between clusters in the mean model.This class will, among other things, enable models with heavy-tailed distributions to be explored, providing robust estimation against outliers. The h-likelihood provides a unified framework for this new class of models and gives a single algorithm for fitting all members of the class. This algorithm does not require quadrature or prior probabilities.
منابع مشابه
Hierarchical likelihood opens a new way of estimating genetic values using genome-wide dense marker maps
BACKGROUND Genome-wide dense markers have been used to detect genes and estimate relative genetic values. Among many methods, Bayesian techniques have been widely used and shown to be powerful in genome-wide breeding value estimation and association studies. However, computation is known to be intensive under the Bayesian framework, and specifying a prior distribution for each parameter is alwa...
متن کاملhglm: A Package for Fitting Hierarchical Generalized Linear Models
We present the hglm package for fitting hierarchical generalized linear models. It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the model.
متن کاملGenetic Heteroscedasticity for Domestic Animal Traits
Animal traits differ not only in mean, but also in variation around the mean. For instance, one sire’s daughter group may be very homogeneous, while another sire’s daughters are much more heterogeneous in performance. The difference in residual variance can partially be explained by genetic differences. Models for such genetic heterogeneity of environmental variance include genetic effects for ...
متن کاملEstimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.
The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory...
متن کاملProceedings, 10 World Congress of Genetics Applied to Livestock Production DMU - A Package for Analyzing Multivariate Mixed Models in quantitative Genetics and Genomics
The DMU-package for Analyzing Multivariate Mixed Models has been developed over a period of more than 25 years. This paper gives an overview of new features and the recent developments around the DMU-package, including: Genomic prediction (SNPBLUP, G-BLUP and “One-Step”), Genome-wide association studies, Survival models and double hierarchical generalized linear mixed models.
متن کامل